Pandurang Gramin Vikas Pratisthan Sanchalit, Dilip Valase Patil College ,Nimgaon Sawa 410504.

Department of Mathematics

Course Outcomes of Offered Courses:

Sr.No.	Course	Course Outcomes
1	F.Y.B.ScAlgebra and Analytical Geometry	 Upon successful completion of this course the student will be able to: Solve results involving divisibility and greatest common divisors; Solve systems of linear equations Apply Euler-Fermat's Theorem to prove relations involving prime numbers; Polynomial addition, subtraction, division, multiplication, roots of polynomials. Transformation, translation and reflection; To find nature of general conics. Find equation of spheres, cylinders and cones
2	F.Y.B.Sc Calculus I and Calculus II	 Upon successful completion of this course the student will be able to: Prove simple identities and inequalities Be able to calculate limits Be able to calculate limits at infinity Be able to discuss the continuity Be able to calculate limits in

		1	
			indeterminate forms by a repeated use
			of L'Hospital's rule
		•	Be able to use derivatives to find
			intervals on which the given function is
			increasing or decreasing
		•	Understand the concept of Differential
			Equation
		•	Be able to use Differential Equation to
			find Orthogonal Trajectories.
3	S.Y.B.Sc. (Sem III)	Upon s	uccessful completion of this course the
	Calculus of several variables	student	will be able to:
		•	Compute domain and range of functions
		•	Draw level curves of functions
		•	Find limits and continuity of functions
		•	Find partial derivatives
		•	Find higher derivatives
		•	Compute chain rule in differentiation
		•	Define functions of several variables
			and their limits
		•	Calculate the partial derivatives of
			functions of several variables
		•	Apply the chain rule for functions of
			several variables
		•	Calculate the gradients and directional
			derivatives of functions of several
			variables
		•	Solve problems involving tangent
			planes and normal lines
		•	Determine the extrema of functions of
			several variables
		•	Use the Lagrange multiplier method to
			find extrema of functions with
			constrains.
		1	

4	S.Y.B.Sc. (Sem III)	On successful completion of this course unit
	Numerical methods and its Applications	students will be able to:
		• Find errors
		• To rounding off numbers n significant
		digits, to n decimal places.
		• To find Solution of Algebraic and
		Transcendental Equations.
		• Use Interpolation to fit tabular data in
		algebraic equation.
		• Fit straight line, second degree
		polynomial from tabular data.
		• Find area under the curve by using
		Numerical Integration.
		• Find solution of first order ordinary
		differential equations.
5	S.Y.B.Sc. (Sem IV)	On successful completion of this course unit
	Linear Algebra	students will be able to:
		• Understand the basic ideas of vector
		algebra: linear dependence and
		independence and spanning;
		• Know how to find the row space,
		column space and null space of a
		matrix, and be familiar with the
		concepts of dimension of a subspace
		and the rank and nullity of a matrix, and
		to understand the relationship of these
		concepts to associated systems of linear
		equations;
		• Be familiar with the notion of a linear
		transformation and its matrix;
		• Find the Gram-Schmidt
		orthogonalization of a matrix.

6	S.Y.B.Sc. (Sem IV)	On successful completion of this course unit
	Vector Calculus	students will be able to:
		• Find limit and continuity of vector
		valued functions
		• Find derivatives of vector valued
		functions
		• Find integrals of vector valued
		functions
		• Find arc length along a space curve
		• Find line integral of scalar functions
		• Find line integrals of vector fields
		• Find work done and flow
		• Study divergence theorem, stokes
		theorem
		• Find surface integrals