Course outcome

F.Y.B.Sc.

Course	Learning out comes
	• understanding of behaviour of gases, ideal gas as a model
	• System and its extension to real gases. The dependence of
	physical state on
	• Pressure, volume and temperature is being realized.
	• The existence of liquid state, comparison of its properties with
	other states
Physical & Inorganic	• Theoretical basis of adsorption phenomena is integrated.
Chemistry	Understanding dynamic nature of
	surface and its applications in catalysis and in
	dispersed phases will lead to new area of
	Nanoscience. Mathematical background
	required for derivations, depictions and
	problem solving. This
	• Chapter strengthens these aspects.
	• 1) Mole concept
	2)GMV relationship
	• Normality, Molarity, Normal solution, Molar solution, equivalent
	weight, ppm, %w/v,
	• %v/v & related problems.
	• Standard solution, primary & secondary standard substances,
	standardization of solution
	• Understand the concept of oxidation & reduction, oxidizing
	agent, reducing agent, redox
	• reaction, oxidation number, Balance the equation by ion electron
	method & oxidation number
	• The fundamental concepts which govern the structure, bonding,
	properties and reactivities of organic molecules such as covalent
	character, hybridization, bond angles, bond energies, bond
	polarities and shapes of molecules.

	• Drawing of organic molecules and arrow pushing concept.
	• Acid-base theories, pKa / pKb values for common organic acids
	and bases and factors
	• Affecting strength of acids and bases.
	• Structural effects and their applications in determining strength
ORGANIC & INORGANIC	of acids and bases.
CHEMISTRY	• The common and IUPAC names of alkanes, alkenes, alkynes and
	homocyclic, polycyclic aromatic hydrocarbons.
	• Methods of preparation and chemical reactions of alkanes,
	alkenes, alkynes and homocyclic, polycyclic aromatic
	hydrocarbons.
	• Application of Huckel's rule to different organic compounds to
	find out aromatic /non
	• Aromatic characters.

S.Y.B.Sc.

Course	Outcomes
	• Concept of kinetics, terms used, rate laws, types of order
	Discuss examples of first order and second order reaction.
	Pseudo molecular reactions
	• Factors affecting on rate of reaction
Physical Chemistry	Techniques of measurement of rate of reaction
	• Know about photochemistry
	• Understand difference between thermal and
	photochemical reactions
	• Understand laws of photochemistry
	• Learn what is quantum yield and it's measurement
	• Know Types of photochemical reactions and photophysical
	process Know about quenching and chemiluminescent

		٠	Concept of distribution of solute amongst pair of
			immiscible solvents ii. Distribution law and it's
			thermodynamic proof
		٠	Distribution law and nature of solute in solution state iv.
			Application – Solvent extraction
		•	Students should learn
		•	What is Analytical Chemistry
		•	Chemical analysis and its applications
		•	Sampling
		٠	Common techniques
		•	Instrumental methods and other techniques
		٠	Choice of method
		•	Meaning of error and terms related to expression &
			estimation of errors
		٠	Methods of expressing accuracy and precision
		•	Classification of errors
		•	Significant figures and computations
		•	Distribution of errors
		•	Mean and standard deviations
		•	Reliability of results Basic principles in qualitative analysis
		•	Meaning of common ion effect
		•	Role of common ion effect and solubility product
		•	Different groups for basic radicals
		٠	Group reagent and precipitating agents
	Organic Chemistry	٠	Students should be able to –
		•	Identify chiral center in the given organic compounds.
		٠	Define Erythro, threo, meso, diasteroisomers with suitable
			examples.
		٠	Able to find R/S configuration in compounds containing
			two chiral centers.
1			

	• Explain Bayer's strain theory, Heat of combustion and
	relates stability of cycloalkanes.
	• Explain the stability of cyclohexanes.
	• Draw the structure of boat and chair configuration of
	cyclohexane.
	• Draw axial and equatorial bonds in cyclohexane.
	• Draw structure of conformations of mono- & disubstituted
	cyclohexanes
	• Explain the stability of axial and equatorial conformation
	of monosubstituted
	• Cyclohexanes. Define and classify heterocyclic
	compounds.
	• Use Huckel rule to predict aromaticity.
	• Suggest synthetic route for preparation of various
	heterocyclic compounds.
	• Write and complete various reactions of heterocyclic
	compounds.
	• Predict products.
Inorganic Chemistry	• A student should be able –
	• To differentiate between ore and minerals.
	• To differentiate between calcination and roasting and
	smelting.
	• To know the different methods for separation of gangue or
	matrix from metallic compounds.
	• To know the terms smelting, flux.
	• A student should be able -
	• To know physico-chemical principles involved in
	• To know physico-chemical principles involved in electrometallurgy.
	 To know physico-chemical principles involved in electrometallurgy. To understand electrolysis of alumina and its refining.

	• To know purification of bauxite ore.
	ro explain the term pyrometanurgy and to explain the
	incontration principles
	Involved in the reduction process by carbon monoxide. The larger different resetions in the black formation
	• To know different reactions in the blast furnace.
	• To differentiate between properties of pig iron and wrought
	iron.
	• To explain the basic principles of different methods for
	preparation of steel.
	• To explain the merits and demerits of different methods.
Analytical Chemistry	Mooning of aguivalant weight molecular weight
T marytical Chemistry	• Meaning of equivalent weight, molecular weight,
	secondary standards
	Secondary standards. Different way to express concentrations of the colution
	Different way to express concentrations of the solution.
	The select respectively and here
	• To solve numerical problems.
	• Calibrate various apparatus such as burette, pipette,
	volumetric flask, barrel pipette
	• etc.
	• Types instrumental and non instrumental analysisi.
	Explain role of indicators.
	• Know mixed and universal indicators.
	• Know neutralization curves for various acid base titration
	• Know principle of complexometric precipitation and redox
	titrations.
	• Know the definitions and difference between iodometry
	and iodimetry.
	• To know standardization of sodium thiosulphate and
	EDTA.

• Reactions between CuSO4 and Iodine and liberated I2 and
Na2S2O3
• Choice of suitable indicator.
• Estimate copper from CuSO4 and available chlorine in
bleaching powder.
• Prepare standard silver nitrate solution.
• Mohr's and Fajan's method.
• Determine the amount of halides separately and in
presence of each other.

Course	Outcomes	
	After studying this topic students are expected to known	
Physical Chemistry	• Expression for rate constant k for third order reaction	
	• Examples of third order reaction	
	• Characteristics of third order rate constant k	
	• Derivation for half-life period of third order reaction and to show	
	that half-life	
	• inversely proportional to square of initial concentration of	
	reactants.	
	• Graphical evaluation of energy of activation	
	• xi. Solve the numerical problems based on this topic.	
Inorganic Chemistry	• ii. Know the assumptions and limitations of VBT	
	• iii. Understand the need of concept of MOT	
	• iv. Know LCAO principal and its approximation	
	• v. Understand and show the formation of bonding and antibonding	
	MO's	
	• vi. Draw the shapes of s, p, d orbital	

T.Y.B.Sc

	• vii. Draw combinations of s-s, s-p, p-p and d-d orbital to form σ
	and π molecular orbitals.
	• viii. Give the comparison of a) Atomic orbital and molecular
	orbital
	• b) BMO and ABMO
	• c) Sigma and pi MO's
Organic Chemistry	• Definition and type of nucleophiles and leaving groups
	• 2. Different types of nucleophilic substitution reactions
	• 3. Definition of inversion and racemization
	• 4. The kinetics, mechanism & stereochemistry of these reactions
	• 5. Whether a given reaction follows SN1 or SN2 mechanism?
	• 6. The comparison between SN1 & SN2 reactions
	• 7. An SNi mechanism in presence and absence of pyridine
	• 8. To predict product/s or supply the reagent/s for these reactions
	• Different types of carbon-carbon unsaturated compounds
	• 2. Orientation / rules in addition reactions
	• 3. The structure of carbonyl group
	• 4. Reactivity concept
	• 5. Correct mechanism of addition reactions using different
	reagents
	• 6. Types of some known addition reactions
	• 7. To predict product/s or supply the reagent/s for such reactions
Analytical Chemistry	• Principles of common ion effect and solubility product
	• 2. Formation of complex ion
	• 3. Factors affecting on solubility of precipitation
	• 4. Phenomenon of super saturation and precipitation formation
	Methods of thermo gravimetric analysis
	• 2. Principles of TGA and DTA
	• 3. Types of TGA
	• 4. Relation between TGA and DTA
	• 5. Thermal equation of TGA

	Principles of Spectrophotometric analysis and properties of
	electromagnetic radiations
	• 2. Different Terms like absorbance, transmittance, and molar
	absorptivity
	• 3. Mathematical Statement and derivation of Lambert's Law and
	Beer's Law
	• 4. Different wavelength selectors and their importance
	The students are expected to learn;
	• Importance of chemical industry,
	• Meaning of the terms involved,
Industrial Chemistry	• Comparison between batch and continuous process,
	• Knowledge of various industrial aspects
	• Students should know
	• Scope,
	• Nutritive aspects of food constituents,
	• Quality factors and their measurements,
	• Food deterioration factors and their control;
	• Food preservation and Food additives
	• Learn importance of these industries,
	• Manufacture of cement by modern methods
	• Definition of setting and hardening
	• iv. Reinforced concrete
	The students are expected to learn the following aspects of Polymer
	Chemistry
Polymer Chemistry.	• What is polymer degradation?
	• Chemical and geometric structures of polymers.
	• Important polymers like PVC, polystyrene, polyvinyl alcohol,
	Teflon, Resins, nylon, epoxy
	• Polymers, etc.
	• 57
	• Uses & properties of polymers.

Role of polymer industry in the economy.
• Advantages of polymers.
• Some industrially important polymers

Organic chemistry-I Inorganic chemistry-I Physical chemistry-I

CSO-1 Learns the fundamentals of reaction mechanisms

- CSO-2 Understands the mechanism of nucleophilic substitution and elimination reactions
- CSO-3 Appreciates the fundamentals of aromaticity in organic chemistry
- CSO-4 Acquires the 3-D aspects of organic molecules.
- CSO-5 Gains the potential about complex vitamin and nucleic acid structure
- CSO-1 Understands the background of bonding forces
- CSO-2 Appreciates the importance of various theories in bonding
- CSO-3 Learns the chemistry basis of solid state
- CSO-4 Gains the imagination of 3D structures of silicates and caged compounds
- CSO-5 Estimates the importance of extractive metallurgy
- CSO-1 Understands the various theories of electrolytic conductance
- CSO-2 Recognizes the dynamics of electrode reaction
- CSO-3 Learns the classical status of thrmodynamics
- CSO-4 Appreciates the fundamentals of molecular thermodynamics
- CSO-5 Estimates the basis of chemical surfaces
- Instrumental method of analysis

Inorganic practical-I

- CSO-1 Analysis the variations of practical errors
- CSO-2 Gains the potential about different precipitation processes
- CSO-3 Determines the procedure for electro analytical techniques
- CSO-4 Determines the procedure for thermo analytical techniques
- CSO-5 Validates the strength of spectro analytical techniques
- CSO-1 Determines the procedure for semi micro analysis of inorganic salt mixture
- CSO-2 Understanding the procedure for semi micro qualitative analysis
- CSO-3 Estimates the accurate analytical procedure of analysis

- CSO-4 Appreciates the procedure for inorganic analysis
- CSO-5 Learns the steps involved in the complex formation process
- CSO-1 Understands the various source for collection of raw materials
- CSO-2 Gains the importance about manufacturing process
- CSO-3 Determines the necessity for small scale industries
- CSO-4 Learns socio impact of sugar and agro chemicals
- CSO-5 Validates the cause, consequence and control of pollution
- Organic chemistry-II
- Inorganic chemistry-II
- Physical chemistry-II
- CSO-1 Understands the basis of redox reaction
- CSO-2 Appreciates the various steps involved in the molecular rearrangements
- CSO-3 Visualizes the aromatic electrophilic substitution mechanism
- CSO-4 Analyses the cruciality of the stereochemical process
- CSO-5 Perceives the concept of conformational analysis
- CSO-1 Learns the structure and properties of coordination compounds
- CSO-2 Analyses the reaction pathways of complex formation
- CSO-3 Validates the role of bioinorganic chemistry in every day action
- CSO-4 Appreciates the vibrant role of catalysts in chemical reaction
- CSO-5 Visualizes the energy behind the nuclear reaction
- CSO-1 Learns the importance of chemical reaction against tine
- CSO-2 Validates the theoretical background of rotational spectra
- CSO-3 Analyses the physical approach of IR and Raman spectra
- CSO-4 Gains knowledge about NQR and ESR spectra
- CSO-5 Encompasses the symmetrical utility of molecules
- Organic practical-I
- Polymer chemistry
- Green chemistry
- CSO-1 Learns principle of organic estimation
- CSO-2 Gains the procedure for organic separation and derivation
- CSO-3 Understands the method of organic preparation
- CSO-4 Develops the various routes for recrystallization
- CSO-5 Identifies the way for identification of components